Immunology: What’s the Immune System Got to Do With It?
Christine L. Kempton, MD, MSc
Associate Professor
Departments of Pediatrics and Hematology and Medical Oncology
Aflac Cancer Center and Blood Disorders Center
Emory University

DISCLOSURES
Consultant: Bayer Biopharmaceuticals, Baxter Bioscience
Advisory Board Participant: Kedrion Biopharma, CSL Behring, Baxter Biosciences
Research Support: CSL Behring Foundation and Novo Nordisk

OUTLINE
- What are Inhibitors?
- How does the immune system work?
- What are risk factors for inhibitor development?
- Can medications change how I respond to factor?
OUTLINE

1. What are Inhibitors?
2. How does the immune system work?
3. What are risk factors for inhibitor development?
4. Can medications change how I respond to factor?

WHAT ARE INHIBITORS?

- Antibodies directed against either factor VIII or factor IX (factor VIII/IX = antigen)
- Frequency
 - Severe hemophilia A: 25-30%
 - 50-75% are high-titer (>5 BU/ml)
 - 25-50% low-titer (<5 BU/ml)
 - 10% low-titer inhibitors are transient
- Mild and moderate hemophilia A: 3% to 13%
- Severe hemophilia B: up to 3%

HOW INHIBITORS WORK

WHY DO SOME PEOPLE DEVELOP AN INHIBITOR AND OTHERS DO NOT?

OUTLINE

- What are inhibitors?
- How does the immune system work?
- What are risk factors for inhibitor development?
- Can medications change how I respond to factor?

THE IMMUNE SYSTEM

- Designed to protect us against bacteria, viruses and other harmful foreign pathogens
- A functional immune system is required:
 - To respond quickly
 - To communicate between cells
 - To distinguish between self and non-self
 - To remember what was seen before and was harmful
RESPOND QUICKLY
- Innate Immunity
 - Occurs immediately
 - Cells that have specialized function to phagocytize (eat/engulf) bacteria
 - Toll-like receptors that recognize patterns that signal danger

REMEMBER WHAT WAS BAD
- Adaptive immunity
 - Occurs later
 - Needs coordination of cells to expand a specific response
 - Leads to immune-memory

IMMUNE SYSTEM: CELLS

Developed by Christine Kempton, M.D.
IMMUNE SYSTEM: CELLS

- **Phagocytes** - cells that patrol the bloodstream looking for bacteria to ingest.
- **Antigen presenting cells** (dendritic cells, B-cells, monocytes)
 - Responsible for processing large proteins into readable fragments and showing them to B or T cells.

IMMUNE SYSTEM: CELLS

- **Lymphocytes**
 - **B-cells** - present antigen to T cells and produce antibodies
 - Antibodies coat a pathogen (bad actor) to signal other cells to get rid of it.
 - **T-cells** - lots of different functions
 - Kill infected cells
 - Signal to activate and recruit other immune cells
 - Regulate the immune response — prevent reacting the body's own cells
 - **Plasma cells**
 - B-cells turn into plasma cells that secrete antibodies

COMMUNICATION

- Cells communicate with each other
 - Cell-to-cell contact
 - Receptors and Ligands
 - Secretion of signaling molecules (cytokines)
 - Pro-inflammatory
 - Anti-inflammatory
 - Different combinations can lead to different results
 - Antibodies bind the invader and target it for destruction
ANTIBODIES

- Bind to antigens
- Targets the antigen as an "bad"
- Lots of variability in antibodies and what they can bind

DISTINGUISHING SELF FROM NON-SELF

- Tolerance is the prevention of an immune response against a particular antigen (substance that causes binds antibody)
- Central tolerance: In the thymus lymphocytes are exposed to self-proteins. If they interact, they are destroyed

PATHWAYS TO PERIPHERAL TOLERANCE

- Normal Response
- Anergy
- Activation induced cell death
- Cytokine regulation
LACK OF THE RIGHT SIGNAL CAN LEAD TO TOLERANCE

Immune Response
CD28
B7

Antigen Recognition
without co-stimulation

Proliferation &
differentiation ⇒ Inhibitor

Anergy
Tolerance (no inhibitor)

DANGER THEORY

Immune & inflammatory cell death

Tissue

Damage

Here's the danger signal:

Fever
Inflammation
Infection
Tumor
Activation of lymphocytes

The danger signal affects the body's response:

Inflammation
Autoimmunity
Cytokine release

MAJOR HISTOCOMATABILITY COMPLEX (MHC)

- Set of cell surface molecules
- MHC Class I: Marker for self. Present on nearly all cells.
- MHC Class II:
 - Typically only found on antigen presenting cells.
 - Used to present proteins such as factor VIII or IX
 - Not all protein fragments will fit in the MHC pocket
- Lots of variability in antigen presentation:
 - 4 genes with 2 sets of each gene
 - Lots of variability in the genes

IMMUNOLOGICAL MEMORY

- A subset of B-cells go on to be memory cells
- Memory cells last a long time and can become activated more quickly when they see a similar antigen again

ALLERGY

- Allergic reactions occur in approximately 3-4% of patients receiving factor IX
- Inhibitors occur in some but not all that have an allergic reaction ~40%
- Allergic reactions and inhibitors most commonly occurs in patients with large deletions of the factor IX gene
ALLERGY

![Diagram of immune system](https://www.cancer.gov/cancertopics/understandingcancer/immunesystem)

OUTLINE

- What are inhibitors?
- How does the immune system work?
- What are risk factors for inhibitor development?
- Can medications change how I respond to factor?

RISK FACTORS

Severity of disease (severe >>> mild/moderate)

In severe disease:
- >20 days of factor VIII exposure
- Molecular defect: FVIII genotype
- Family history
- Race
- Polymorphisms of immune response genes
- Surgery at first exposure

In mild/moderate disease:
- Surgery as the indication for first intensive FVIII treatment (>5 consecutive days)
- Intensive FVIII treatment in those >20 years
- Missense mutation R593C
FACTOR VIII GENOTYPE

<table>
<thead>
<tr>
<th>Frequency: severe</th>
<th>Rate of inhibitor development</th>
</tr>
</thead>
<tbody>
<tr>
<td>hemophilia A</td>
<td>5.4%</td>
</tr>
<tr>
<td>Large deletion</td>
<td>41%</td>
</tr>
<tr>
<td>Multiple domains</td>
<td>88%</td>
</tr>
<tr>
<td>Nonsense</td>
<td>31%</td>
</tr>
<tr>
<td>Intron-22 inversion</td>
<td>13.6%</td>
</tr>
<tr>
<td>Missense</td>
<td>21%</td>
</tr>
<tr>
<td>Overall</td>
<td>15%</td>
</tr>
<tr>
<td>Rate: Mild</td>
<td>10%</td>
</tr>
</tbody>
</table>

PATIENT-RELATED RISK FACTORS

- Family history – risk of inhibitor
 - 50% if a sibling has an inhibitor
 - 10% if an extended relative has an inhibitor

- Race – prevalence of inhibitor
 - Blacks 55.6%
 - Whites 27.4%
 - Hypothesized to be related to 4 single nucleotide polymorphisms of the FVIII gene
 - Leads to a single amino acid difference when compared to the FVIII protein found in recombinant FVIII treatment products
 - Unadjusted OR 3.4 (95% CI 1.1-10.2) for inhibitor development in those with haplotypes different than that found in FVIII treatment products

PATIENT RELATED RISK FACTORS

- How T-cells and B-cells interact in response to factor VIII can influence inhibitor formation
- Variations of some genes related to T-cell and B-cell interactions can increase the likelihood of inhibitor formation
 - IL10: Promotes antibody production, but also counteracts inflammation
 - TNF-α: Promotes inflammation
 - CTLA4: Found on the surface of T-cells. Inhibits T-cells.

TREATMENT-RELATED RISK FACTORS

- Severe disease
 - Surgical procedure was the first indication for treatment:
 - Adjusted RR 2.6 (95% CI 1.3-5.1)
 - 65% of subjects who had surgery as their first indication for treatment developed an inhibitor vs 23% of those who had another indication for treatment
 - After major peak treatment moment during the first 50 FVIII exposure days: Adjusted RR 1.6 (95% CI 1.0-2.6)
 - Prophylaxis may be protective
 - RR 0.4 (95% CI 0.2-0.8)

- Mild/moderate disease
 - Surgery as the indication for first intensive FVIII treatment (≥5 consecutive days)
 - Intensive FVIII treatment in those ≥30 years
 - Inhibitors occurred equally in both age groups, but patients <30 years were not associated with intensive FVIII treatment
 - Factor VIII genotype Arg593Cys
CONTROVERSIAL RISK FACTORS

- Type of factor: Plasma-derived vs Recombinant
 - Conflicting results from meta-analyses and observational studies
 - Ongoing prospective randomized study
 - SIPPET Project
- Type of factor: Full length vs B-domain deleted
- Method of delivery: Continuous infusion vs bolus injection (mild/moderate)
- Product switching
 - Canadian and UK experience does not support this as a concern

OUTLINE

- What are inhibitors?
- How does the immune system work?
- What are risk factors for inhibitor development?
- Can medications change how I respond to factor?

ITI: HOW DOES IT WORK?

Possible mechanisms include:

- Inhibition of memory B-cell differentiation
- T cell anergy
- Induction of anti-idiotypic antibodies
 - Directly bind anti-FVIII antibodies
 - Interact with B-cell receptors → inhibitor of B cell responses (i.e. memory B-cell differentiation) and apoptosis
- Induction of suppressor T cells

ALTERING THE IMMUNE SYSTEM WITH MEDICATIONS

Rationale: If the immune system is integral to antibody production, then alteration of the immune system may be of benefit in getting rid of inhibitory antibodies.

IMMUNE MODULATION

- In North American Immune Tolerance Registry, no benefit to immune modulation
- Routine use not recommended
- Can be considered for inclusion in subsequent attempts of ITI

IMMUNE MODULATION: MEDICATIONS

- Rituximab
- IVlg
- Cyclophosphamide
- Prednisone
- Mycophenolate
RITUXIMAB

- Anti-CD20 antibody
- CD20 found on B-cells
- Leads to depletion of B-cells
- Generally well tolerated
 - Infusion reactions—fevers and chills not uncommon

RITUXIMAB

- Review of 15 subjects treated with Rituximab in the UK
 - All subjects had failed prior ITI
 - 12 treated with concomitant FVIII
 - CR 50%, PR 33%, NR 17%
 - 3 treated without concomitant FVIII
 - No response 100%

MEDICATIONS

- IVIg
 - Mechanism of action: anti-idiotype antibodies
 - Benefit transient
 - Side effects: Head ache, infusion reaction

- Cyclophosphamide
 - Mechanism of action: inhibits antibody synthesis
 - Side effects: BM suppression, GU toxicity, sterility, secondary malignancy
 - Both IVIg and cyclophosphamide were part of original Malmo ITI protocol

Both IVIg and cyclophosphamide were part of original Malmo ITI protocol.
MEDICATIONS

- Prednisone - lots of different actions
 - Suppresses inflammation
 - Side effects: low bone density, cataracts, high blood sugar, hypertension, stomach ulcers
- Mycophenolate; AKA Cellcept
 - Inhibits an enzyme needed for growth in T and B cells
 - Side effects: diarrhea, nausea, vomiting, infections, low white blood cell count
 - Case reports of use with ITI and rituximab in patients with hemophilia B complicated by an inhibitor

SUMMARY

- Immune system designed to protect us from things it perceives as dangerous invaders.
- Complex network of cells, proteins, and receptors signals whether something new (non-self) is dangerous or not
- If perceived as dangerous, an antibody will be made
- If an antibody to factor VIII/IX blocks its function, it will be an inhibitor

SUMMARY

- Inhibitors are more likely to develop when
 - Infused factor VIII/IX is very different from the factor VIII/IX in the bloodstream (genetics)
 - The persons cells can easily uptake and present the infused factor VIII/IX on the cell surface of antigen presenting cells (MHC)
 - The environment at the time of antigen presentation gives signals that danger is afoot (treatment-related risk factors and genetics of the immune system)
SUMMARY

- Treatment of inhibitors is directed at reducing the long-term memory and teaching the immune system that factor VIII/IX is not dangerous.
 - ITI-mainstay
 - Medications that change the immune system can be considered for those who fail to adequately respond to ITI

QUESTIONS?